Recommendations and Questions

wwPDB/CCDC/D3R Ligand Validation Workshop Center for Integrative Proteomics Research, Rutgers 7/30-31/2015

Group D, Academic and Industrial Crystallographers: Kathleen Aertgeerts (co-chair)

David Brown (co-chair)

Seth Harris

Tobias Krojer

Alan Mark

Guy Montelione

Robert Nolte

John Spurlino

Chenghua Shao

Oliver Smart

Paul Emsley (PM session)

Recommendations

1. Recommended X-Ray Structure Refinement Workflow

SMILES String for ligand

Potential ambiguity in chirality, tautomeric state and charge

Available software: CORINA, ELBOW, GRADE, Afitt, ACEDRG, PRODRUG, ATB

CIF, PDB, PNG, MOL2

Available software: Coot, Phenix, Buster, Refmac

Refined protein +ligand CIF/PDB

Validation (see next slides)

Wiki-style educational recommendation on good practices on ligand chemistry and structural solution, with community cooperation and contribution.

1b. Dictionary/model

- Dictionary: Key restraints used in refinement that can be from multiple sources. To incorporate rotation freedom of certain bonds, and certain degree of freedom for conformation flexibility.
- Model: Set of 3D coordinates of ligand to start modeling and refinement process. To find lowenergy conformation(s). To combine tools and manual process.

2. Validation of ligand during model building and refinement cycle

- Comparison of B values on protein vs ligand
- Consideration of occupancy in refinement on ligand; consideration of multiple conformations on ligand; Consideration of disordered moiety of ligand
- Restraints in mmcif vs observed geometry in refinement process
- Database methods (e.g. Mogul) or automatic computational scientific software that assesses ligand geometry during refinement (to be developed)
- Issues(breakout session): covalent ligands, unnatural amino acids
- RSCC/RSR/LLDF, and difference density explanation. Alternate modeling, e.g. test hypothesis of the extra density being water
- Include hydrogen atoms to ligand and its binding site residues that facilitates interpretation of protein-ligand interaction

3. Validation during PDB deposition

- Full ligand should be enumerated, and author defines ligand of interest (e.g. LIG vs ATOM/ HETATM) in the PDB/CIF model file
- Restraints dictionary in mmCIF file mmCIF
 - Ligand definition (Recommend to include into mmCIF energy term interpretation, and refinement program to output required files for deposition)
- Slider picture of ligand quality assessment (general and conditional on resolution)
- RSR, RSCC values at atom and ligand level
- Develop simple and clear metrics on ligand quality at atomic level
- Difference electron density figure with fitted ligand
- Additional column of uncertainty measure(TBD, quantitative) per atom in mmcif that can be captured in visualization programs, e.g. well-defined/ill-defined in NMR VTF; no density with color code;
- Automated computational scientific tools available on web; software to predict reasonable geometry. And distributable package for local clients
- Batch deposition process
- Make CAVEAT more obvious and request for authors to fix/explain issues
- Protein-ligand interaction: clash score, interaction fingerprint and energy. To compare a new structure's ligand to the existing validated structures; fragment fitting comparison.

3b. Additional optional information provided by authors during PDB deposition

- Available QC data on ligand (e.g. NMR, MS)
- Binding data. In batch mode deposition, to have access to the experimental binding data for the set.
- Author's processing details/comments in fields specific to individual ligand and its refinement process
- Other info (e.g. source)

4. Ligand Validation during journal submission

- wwPDB validation report including enhanced ligand validation (Buster report as example). Highlight CAVEAT and author's response.
- Initial omit density before ligand is loaded (with the final ligand model overlay); difference electron density figure with fitted ligand.
- Recommend disclosure of fitted ligand and binding pocket. Provide web-access to the coordinates, SF, and map coefficients for reviewers
- Re-refinement on any existing structure should refer to the original structure/publication, as well as new deposition made

5a. Recommendation on existing PDB archived co-crystal structures: what users want

- Flag of bad structures, or bad ligands using validation tools. Display slider bar for ligand(s).
- Alert authors of the entries identified above
- Possible automatic re-calculation on alternate modeling for the co-crystallized ligands identified above, which could motivate CASPlike computation competition and development of new methods.

5. Recommendation on existing PDB archived co-crystal structures

- Update on the model by the same author (or PDB) keeps the same PDB code with versioning, no requirement for obsolete, and requires mandatory description for the reason of update.
- Re-refinement of any structure done by different/same authors, using same data, new PDB code should refer to the original PDB code and data (current practice at wwPDB)
- Capture curated comments from authors/users on the PDB web

Recommendation for ligand chemistry description

- Agree to all the recommendations in the doc
- Indicator of the exact charge or tautomer state in the model (author provided, or unknown)
- Standardize atom naming convention, e.g.
 InChi canonicalization

Questions/ Points of discussion

Questions:

- Refinement vs Validation: Validation can be performed during refinement, after refinement, during validation, during PDB process. What is the best practice?
- Buster's ligand review example (see bottom) and its implication on ligand validation process.
- What is ligand? (e.g. Glycerol, Sodium ion can be relevant ligands but mostly are solvent/buffer).
 To let author specifically mark what is significant for structure for referee review?

Questions (cont)

- Occupancy review, e.g. how to deal with zero occupancy?
- B factor review, e.g. how to deal with B factors that are very high?
- Validation components needs to be distributed to the community?
- Accessibility of critical software to diverse academic research groups, so that all users are able to generate files for ligand modeling, validation, and deposition.
- Inconsistent outcome between components, e.g. Mogul vs OpenEye. Leading to direction of cross validation?
- Density fitting restraints at lower resolution may have problems and ambiguity.
- Special cases that are valid can be outlying against reference. How to highlight and deal with it?

Questions (cont)

- Ligand completeness issue. To set artificial occupancy (e.g. zero) can complicate B factor.
- The current problems with refinement programs: covalent, metal, etc.
- Automatic tools at web to assess/predict ligand validity.
- Batch deposition output from in-house sources/databases should be handled, and how?

Questions (cont)

- Explanation for unfitted density? Especially the presence of difference density close to the ligand atoms.
- To include validation components in refinement?