Integrative structure determination of macromolecular assemblies

Andrej Sali http://salilab.org/

Department of Bioengineering and Therapeutic Sciences Department of Pharmaceutical Chemistry California Institute for Quantitative Biosciences University of California, San Francisco

Disseminating structural models

Publishing models in a **printed paper**

Depositing models in a **computer database**

Depositing input data in a computer database

Depositing modeling protocols for converting data to models

Enable others to interact with data and models: test, improve, use data and models

- **Types** of structural models (static and dynamic):
 - **information**: X-ray, NMR, EM, and SAXS structures; "theoretical" models; hybrid models
 - representation: atomic, coarse-grained, multi-scale models

• **PDB** is a natural facilitator of establishing conventions, standards, interfaces, assessment criteria, publication criteria, *etc*, thus catalyzing a collaborative community

Contents

- 1. Integrative (hybrid) structure determination
- 2. Fitting multiple subunits into an EM map subject to restraints from proteomics
- 3. Structure of the yeast Nup84 complex

Integrative determination of macromolecular structures

for maximizing accuracy, resolution, completeness, and efficiency of structure determination

Use structural information from any source: measurement, first principles, rules; resolution: low or high resolution

to obtain the set of all models that are consistent with it.

	J.	0				
X-ray crystallography	NMR spectroscopy	2D & single particle electron microscopy	electron tomography	immuno- electron microscopy	chemical cross-linking	affinity purification mass spectroscopy
subunit structure	subunit structure				suburit structure	
subunit shape	subunit shaps	supple Sranbue	aubunit shupe			
subunit-subunit contact	subunit-subunit contact	subunt-subunt contact	subunt-subunit contact	a doubt considerity	subunit-subunit contact	subunit-subunit contect
subunit strictionetry	suburil stochiomoiry	Betavine bedrausty	Suborn preaminy	Bubunit proximity	BODUNI provininy	suburst prosinisty
assembly symmetry	Assembly symmetry	assembly symmetry	asymmetry	assembly symmetry	-	
assumbly shape	assembly shape	assembly shape	assembly shape		1900-00 C	
assembly structure	Asserticity situation					
FRET	site-directed mutagenesis	yeast two-hybrid	gene/protein arrays	AGFLIKIIGFGHGARWTG	computational docking	bioinformatics
		1		subunit strücture		
subunt-subunit contact	sutrunit-subunit contact	Sating tructue-tweeter	subunit-subunit contect	- Andread Studies	subunit-subunit contact	BUOLITING CONTINCE
suburit proximity	-	BUDURHE PROMITINY	Saturnit provinsty			
		h-		+		1-

Sali, Earnest, Glaeser, Baumeister. From words to literature in structural proteomics. Nature 422, 216-225, 2003.

An approach to integrative structure determination

Alber *et al. Nature* **450**, 683-694, 2007. Robinson, Sali, Baumeister. *Nature* **450**, 974-982, 2007. Alber, Foerster, Korkin, Topf, Sali. *Annual Reviews in Biochemistry* **77**, 11.1–11.35, 2008.

Integrative Modeling Platform (IMP)

D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tijoe, D. Schneidman, F. Alber, B. Peterson, A. Sali, PLoS Biol, 2011.

- IMP-1.0 available at http://salilab.org/imp/ (3/10/10)
- Open source, SVN, documentation, wiki, examples, mailing lists, unit testing, bug tracking, ...

ſ	-		Compar	asive Modèling wit	b Modeller	_						
5	hoose the target (sequence to be modeled):			POA6F5		- 10						
					C. C. Martine		A 0	0		Modelle	er Results	
¢	Dioose at least one template: Fetch Structures/Annotat				intatie (Column	s Fetc	Scores				
	Sequence S	Structure ID	ND	Title	1		Condition					
1	liek	110K	68.3%				 1 	reatmen	nt of Ch	osen Mode	ls	
l	19/5	1CR5	99.5%	SOLUTION STRU CRYO-ELECTRON	CTURE OF APO GROEL BY	1				Estimated	Estimated	
l	lane	IAON	100.0%	CRYSTAL STRUC CHAPERONIN CO	TURE OF THE ASYMMETRIC E MPLEX GROEL/CROES/(ADP)	schen	Model	GA341	ZDOPE	RMSD	(3.5Å)	DOPE
I				7			#1.1	1:00	0.19	7.153	0.680	-50178.91
I	2c7e	2C7E	99.5%	REVISED ATOMIC	STRUCTURE FITTING INTO		#1.2	1.00	0.27	7.344	0.646	-49518.61
ł	E		_	A GROESTICS PER	PATEZ DATO-EN MAP IEMD	1.	#1,3	1.00	0.25	7.141	0.660	-49662.25
	Athania	d Distings					#1.4	1.00	0.20	5.747	0.684	-50079.25
	Cristines	ine softments	-			-	#1.5	1.00	0.23	6.769	0.703	-49857.44
	-		-				#1.6	1.00	0.30	8.224	0.627	-49275-85
	Publicatio	ns using Mo	deller re	suits should cite			#1.7	1.00	0.21	7.237	0.661	-50021.49
	Comparative by	TRACK PRODUCTION	by Ash itse	tics of the line o	L		#1,8	1.00	0+30	8.636	0.626	-49274.52
	1 Mid Biol 21	H, 779-\$15, 19	R.M.		1		#1.9	1.00	0.19	5.450	0.721	-50168.98
							¥1.10	1.00	0.24	7.149	0.695	-49801.83
					Close	3.04						

| Struct Biol, in press.

Configuration of 456 proteins

Determination by experiment *versus* **prediction by modeling**

Contents

- 1. Integrative (hybrid) structure determination
- 2. Fitting multiple subunits into an EM map subject to restraints from proteomics
- 3. Structure of the yeast Nup84 complex

Assembly architecture from atomic structures of subunits, EM density map of assembly, and proteomics

Find assembly configurations that satisfy:

Shape complementarityQuality-of-fitEnvelope protrusionConnectivityImage: ConnectivityImage: Connectivity<

K. Lasker et al, *Mol Cel Prot*, 2010. Monday, November 7, 11

Optimization / sampling

K. Lasker, M. Topf, A. Sali, H. Wolfson, J. Mol. Biol. 388, 180-194, 2009.

Monday, November 7, 11

Divide-and-Conquer (DOMINO)

1.Represent the scoring function as a graph.

$$\begin{split} F(y_1, \dots, y_8) &= \alpha_2(y_2) + \alpha_6(y_6) + \alpha_7(y_7) \\ &+ \beta_{1,2}(y_1, y_2) + \beta_{1,3}(y_1, y_3) + \beta_{1,4}(y_1, y_4) + \beta_{1,5}(y_1, y_5) \\ &+ \beta_{2,7}(y_2, y_7) + \beta_{2,8}(y_2, y_8) + \beta_{3,6}(y_3, y_6) + \beta_{3,8}(y_3, y_8) \\ &+ \beta_{4,7}(y_4, y_7) + \beta_{5,7}(y_5, y_7) + \beta_{7,8}(y_7, y_8) \end{split}$$

- **2. Decompose** the set of variables into relatively decoupled subsets (a junction tree algorithm).
- **3. Optimize** each subset independently by a traditional optimizer, to get the optimal and a number of suboptimal solutions.
- **4. Gather** subset solutions into the best possible global solutions (message passing algorithms; *eg*, belief-propagation).

K. Lasker, M. Topf, A. Sali, **H. Wolfson**, J. Mol. Biol. 388, 180-194, 2009. M.I. Jordan, Graphical models. *Stat. Sci.* **19**, 140–155, 2004.

Proof-of-principle: Integrative structure determination of human RNAPII

Lasker et al, MCP 2010

Optimization & Analysisdensity map
segmentationImage: colspan="2">Colspan="2"density map
segmentationImage: Colspan="2">MultiFit optimization of
Em quality of fit and
geometric complementarityImage: Colspan="2">Image: Colspan="2"Image: Colspan="2">Colspan="2"Image: Colspan="2">Colspan="2"Image: Colspan="2"Image: Colspan="2"<tr<tr>Image: Colspan="2"

Cramer *et al*, *Science*, 2000 (X-ray) Kostek *et al*, *Structure*, 2006 (EM) Gavin *et al*, *Nature* 2006 (proteomics) Krogan *et al*, *Nature*, 2006 (proteomics)

Assessment of an integrative model of human RNAPII

reference model - human subunit models fit on the corresponding subunits in the crystallographic yeast RNAPII structure

Additional configurational restraints

1. Affinity purification with domain deletion constructs

Orienting subunits by identification of interacting domains J. Phillips; with J. Fernandez, M. Rout:

2. 2D EM class averages

Filtering models by matching their optimal projections to images J. Velazquez, D. Schneidman

3. Assembly subcomplex stoichiometry by native mass spectrometry

Ambiguous network of protein proximities D. Russel, J. Phillips; with A. Politis, C. Robinson:

4. Small Angle X-ray Scattering (SAXS)

Filtering models by their shape D. Schneidman, S.-J. Kim

 $\chi^{2} = \frac{1}{O} \sum_{k=1}^{O} \frac{1}{\sigma_{mn}^{2}(q_{k})} \cdot \left(I_{exp}(q_{k}) - c \cdot I_{m}(q_{k}) \right)^{2}$

Contents

- 1. Integrative (hybrid) structure determination
- 2. Fitting multiple subunits into an EM map subject to restraints from proteomics
- 3. Structure of the yeast Nup84 complex

Towards a higher resolution structure of the NPC

Characterize structures of the individual subunits, then fit them into the current low-resolution structure, aided by additional experimental information.

Alber *et al. Nature* 450, 684-694, 2007. Alber *et al. Nature* 450, 695-702, 2007.

The Nup84 complex in the NPC

Lutzmann et al, 2002

Kampmann et al, 2009

- 7-protein complex
- Forms the two outer rings of the NPC
- Present in 16 copies in the NPC
- Proteins share a common ancestor with vesicle coating complexes

Nup84 complex: Representation

Nup84 complex: Data

Monday, November 7, 11

Nup84 complex: Optimization

Nup84 complex: Ensemble of good scoring solutions

- 10,000 good scoring structures
- All restraints are satisfied (2D-EM, domain deletion, ...)
- Domain-domain orientations are resolved uniquely.
- Full ensemble precision is ~1 nm

Assessing the well-scoring models

- 1. Existence of a good-scoring model.
- 2. Precision of the ensemble of good-scoring models.
- 3. Check model against unused data (cross-validation).
- 4. Known precision / accuracy for "similar" cases.
- 5. Non-random patterns in the model.

Modeling facilitates assessing the data as well as models in terms of precision and accuracy.

Assessment: Agreement with heterodimeric crystallographic structures

Towards a near-atomic structure of the NPC

Nup84 complex

NPC

Conclusions

- 1. Assembly structure determination benefits greatly from the inclusion of all available information, including heterogeneous data sources.
- 2. Open source *Integrative Modeling Platform* (IMP). Developers and users of IMP are most welcome.
- General and efficient assembly of subunit models based on domain deletion pullouts, 2D EM projections, 3D EM maps, SAXS profiles, and native MS.
- 4. Near atomic model of the Nup84 complex.

Acknowledgments

QB3 @ UCSF

Keren Lasker (DOMINO) Jeremy Phillips (NPC) Seung Joong Kim (NPC) Daniel Russel (IMP) Javier Velazquez (2D EM) Ben Webb (IMP)

Massimiliano Bonomi (SPB) Charles Greenberg (EM) Riccardo Pellarin (proteomics) Elina Tjioe (IMP) Dina Schneidman (SAXS) Peter Cimermancic Natalia Khuri

Former members:

Frank Alber (USC) Friederich Förster (MPI) Damien Devos (EMBL) Maya Topf (Birkbeck College) Narayanan Eswar (Du Pont) Marc Marti-Renom (Valencia) Mike Kim (Google) Dmitry Korkin (UM, Columbia) Fred Davis (HHMI) M. Madhusudhan (Singapore) D. Eramian (UCSF) Min-Yi Shen (Applied Biosys) Bret Peterson (Google)

Rockefeller University

Mike Rout Javier Fernandez-Martinez

Loren Hough John LaCava Jody Franke Jaclyn Novatt

Brian Chait

Matthew Sekedat Rosemary Williams Wolfgang Baumeister (MPI) Trisha Davis (Univ of Wash) Tom Ferrin (UCSF) Haim Wolfson (TAU) David Agard (UCSF) Wah Chiu (Baylor) Joachim Frank (Columbia) Nevan Krogan (UCSF) Al Burlingame (UCSF) Carol Robinson (Cambridge)

John Aitchison (ISB) David Stokes (NYSBC) Chris Akey (BU) Robert Stroud (UCSF) Stephen Burley (Lilly) Steven Almo (AECOM) Hiro Tsuruta (Stanford) John Tainer (BNL)

NIH, NSF

The Sandler Family Foundation Human Frontiers Science Program IBM, Intel, Hewlett-Packard, NetApps, Pfizer, Structural Genomix Pharmaceuticals, Mike Homer, Ron Conway